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Abstract— A common solution for estimating a probability We recognize that the data may be noisy or uncertain; or the
mass functionw when given a prior pmf ¢ and a linear constraint  constraints (2)-(3) may bmfeasibleand admit no solution.

Aw = b is to minimize the relative entropy betweenw and ¢ A more appropriate estimate of may then be the solution to
subject to the linear constraint. In such cases, the solutionv

is known to have exponential form. We consider the case that minimize Z(w;q) + o D(Aw — b)
the linear constraint is noisy, uncertain, infeasible, or otherwise I
“soft.” A solution can be obtained by minimizing both the

relative entropy and the distortion betweenAw and b. A penalty \where D : RY — IR is a convex function that measures the
parameter o weights the relative importance between these two

objectives. We show that this penalty formulation also yields a distortion in satisfying (3), and is a positive ?C_a'?“ that can
solution w with exponential form. If the distortion is based on D€ used to balance the tradeoff between m'”'m'ﬂmgﬂ(l)

an ¢, norm, then the exponential form of w is shown to have and D(Aw — b). The parameter can be set in response
exponential decay parameters that are bounded as a function to expected noise in measurements /Afor b and may be

of o. We also state conditions under which the solutionw to  ggt differently depending on the units of measurement of the

the penalty formulation will result in zero distortion, so that the . . . . . .
linear constraint Aw = b holds exactly. These properties are distortion function compared with the bits of relative entropy.

useful in choosing penalty parameters, evaluating the impact N this paper we characterize the analytic form of the
of chosen penalty parameters, and proving properties about minimizer of (4). We show that for any convex distortidh

methods that use such penalty formulations. the solution has an exponential form. Moreover, for a family
Index Terms—relative entropy, Kullback-Leibler distance, Of distortion functions based on thig norm, the parameters of
maximum entropy, penalty formulation, inverse problem, convex the exponential solution can be further characterized: the rate

(4)

subject to 17w =1, w >0,

optimization, exact penalty function, moment constraint of decay is bounded by a function ef These results extend
the work of Campbell [7], who assumed a scalar feature space
l. INTRODUCTION (i.e.,d = 1), andD as thet; distortion on the mean constraint,

o - so thatD(Aw — b) = || Aw — b||.
C ONSIDER the problem of estimating a probability mass The exponential form of the solutions to constrained min-
function (pmf)w € R* given a strictly positive prioy €  imum relative entropy problems has been known for many
IR¥. A common restriction on is a mean constraint, so that ifyears. Proof of an exponential form for a continuous problem

there arek observationsd = [a1, ..., a;] € R*** and a mean zng general constraints can be found in Kullback [2, Theorem
b € R?, thenw must satisfyAw = b. A standard approach [1], 2.1] and Cover and Thomas [4, Chapter 11]. Similar problems
[2], [3] is to minimize the relative entropy function arise in rate distortion theory, and solutions in that framework
k have also been shown to have an exponential form. (For an

I(w;q) = ij log Wi (1) overview of rate-distortion results, see [4] and [8].)
= 4q; The results in this paper grant deeper insight into the esti-

mates resulting from problems of the form (4). In particular,
we see how the choice of directly affects the estimate. In
17w =1, w > 0, (2) Section IV we show that for a family of distortion functions
_ D based on the,, norm, a minimizer to (4) will satisfy the
Aw = b, 3 . P .
linear constraint exactly for alt over a finite threshold value.
where the symboll denotes a vector of ones; its length is The bounded exponential decay property shows that the
determined by context. Often the prigiis the uniform distri- estimator will weight the observations; (the columns of
bution (i.e.,q; = 1/k for eachi = 1, ..., k); the minimization A) so that no observation receives an arbitrarily large or
of (1) is then equivalent to maximizing entropy [4], [5], [6]. small relative weight, regardless of the number of observations
_ . or their specific values. Gupta et al. [9] use this bounded
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on the ratio between the largest and the smallest components dfhe optimization problem (5) i€onvex in other words

the LIME weight kernel. The bounded ratio allows one to staits objective function is convex, and the equality constraints

robust properties about the LIME weight kernel's behaviare linear. Under a suitableonstraint qualification such as

even though the neighborhood training samples (the colum@kter's condition, the first-order optimality conditions of (5)

of A) are random. In particular, the bounded ratio is importaatre in fact both necessary and sufficient (see, for example,

in order to verify Stone’s [10] conditions for the consistenci23], [22]).

of any neighborhood learning method. Definition 2.1 (Slater's Condition)There exists a point
Inference methods based on minimum relative (or maxi the relative interior of the feasible set.

mum) entropy with constraints are now classic [11], [2], [12], Applied to (5) (and recalling the implicit nonnegativity

[1] and enjoy continuing popularity [13], [3], [14], [15], [16]. constraint onw), Slater’s condition implies that there exists

There has also been recent interest in approaches that doapet that satisfies

necessarily treat (3) asteard constraint (see, e.g., [7], [17],

[18]). w >0, 17w =1, Aw =b.

The optimization problem (4) igonvex—both 7 and D o ) .
are convex, and the constraints are linealfs continously  -€t¢ andy be the Lagrange multipliers associated with the

differentiable, its convex structure makes it especially suitaiéSt @nd second constraints of (5), respectively. An optimal
for numerical solution by a variety of interior-point solverdint: together with its associated Lagrange multipliers, must
for nonlinear optimization such as KNITRO [19], LOQO [20] Salisfy the Karush-Kuhn-Tucker (KKT) conditions. -

and MOSEK [21]. Although in practice a numerical solution Definition 2.2 (First-Order KKT Optimality Conditions):

can be computed, theoretical understanding of an estimatfdrifiPle (w”,¢",y*) is a first-order KKT point of (5) if it
method based on (4) relies on a description of how the solutigftisfies the following conditions:
depends on the problem parameters.

T, _
Previously, Campbell [7] gave an analytic solution for the Pw=1 (62)
minimizing pmf of (4) for the scalar case—whe# is a Aw =10 (6b)
1 x k matrix andb is a scalar—for the/; distortion under VoI(w,q)+¢1+ATy=0. (6¢)

the assumption that the uncertain médies within the range
of the set of eventsnin;a; < b < max; a;. We extend
Campbell’'s result in two useful ways. First, the data vect0|t‘

Theorem 2.3:Suppose that Slater’s condition holds. Then
rs1e vector with components

can be of arbitrary finite dimension instead of one dimensional, W= @)
so that instead! hasd rows. Second, the mednneed not be J Z;%‘:l uj’
in the convex hull of the data vectors specified by the columns
of A, so that the solution still exists even if the constraints (2for j = 1,...,k, solves (5), where
(3) are infeasible. T
Uj = qj eXP(—Clj ¥, ®)
Il. THE EXPONENTIAL FORM and y* is the Lagrange multiplier corresponding to the con-

. . . straint Aw = b.
Before we consider the penalty function formulation of the Proof: By Slater's condition, the feasible set of (5) is

minimum relative entropy problem, we first examine the case

. B ; o nonempty. Moreover, the level sefs,, = {w | Z(w;q) <
where the constraints (2)—(3) are imposed explicitly: Z(wo;q)} are closed and bounded. The strict convexityZof

minimize Z(w; q) therefore implies that there exists a unique solutignto (5).
subject to 17w = 1 ) Slater's cond|t!or_1 is sufficient to guarantee that thgrg exist
Lagrange multiplierg™ andy* such thatw*, (*, y*) satisfies
Aw =b. the KKT conditions (6).

We have anticipated a srictly positive solutierf and disre-  NOte that Vi, Z(w;q); = 1 + log(w;/g;). Solve thejth
garded the nonnegativity constraiat> 0, though in practice €duation of (6c) forv} to obtain
they would be explicit. . c Ty 1 9

In this section we establish that the solution of (5) is wj = gjexp(—=¢" —ajy” —1). ©)
exponential; it§ parameter; are th'e columns Aofand the 'Sum (9) over allj, and use (6a) to obtain
Lagrange multipliers associated with the second constraint.

(The Lagrange multipliers of the constraibfw = 1 can k .
be eliminated.) As discussed in the introduction, this result is Z%’ exp(—(¢* —a;y" —1)=1.
not new, and it can be derived from a variety of perspectives. j=1

However, it is us_eful to show a complete derivation so thﬂence,g* must satisfy

we may refer to it later. One elegant approach to derive this

result is to consider the dual of (5) (every convex optimization k

problem has a dual). The recent book by Boyd [22] provides ¢* =log qu exp(—ajry* -1. (10)
an accessible discussion on this topic. j=1
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Replacing¢* in (6¢) with (10), and subsequently solving forof the constrained problem. Exact penalty functions play an
wj, we arrive at important role in the modeling of continuous optimization
problems; they have rich theoretical properties, and when
. , (11) the norm is polyhedral (i.,ep = 1 or p = o0), they are
ijl q; exp(fa]Ty*) computationally practical because they can be reformulated as
polyhedral constraints. They share the same philosophy with
the more general class of penalty functions: by augmenting
the objective function to include a penalty on the constraint
IIl. PENALTY FORMULATION violation, a constrained (and possibly difficult) problem can
It may be that the constraints (2)—(3) are infeasible, & transformed into an unconstrained (and easier, we hope)
that the constraintdw = b need not be solved exactly.problem. Exact penalty functions were first analyzed by
For example, the data may be known to be noisy such tiRietrzykowski [24], and later by Bertsekas [25], Fletcher [26],
Aw = b+ n, wheren is some known or unknown noise; orand Han and Mangasarian [27], among others.
the mean constraint may be uncertain; or fidelity to the pyior For the remainder of this section, let the penalty function
may be highly important relative to the constraint. These casBsin (4) be of the form given by (12). Note that the objective
may be captured by introducing the set of constraitis= b of (4) is convex for anyl < p < oo; but it is not
into the objective via a penalty function as done in (4). everywhere differentiable (i.e., it is onl®). When the norm
In Lemma 3.1 we show that the solution to (4) will havés polyhedral, (4) can be reformulated as an equivalent and
an exponential form ifD is convex. The simple proof of this smooth problem, and in that case, the corresponding first-
lemma provides an insight: the weights that solve (4) are theder KKT conditions (see Definition 2.2) can be applied
same as the weights that solve (5) with the mean constraigtfind optimal solutions. Moreover, a variety of algorithms
Aw = b for someb. for smooth, constrained optimization could then be used to
Lemma 3.1:SupposeD convex. Then there exists a uniqueénumerically solve the smooth reformulations. We discuss one
solution w* to (4) with components that satisfy (7) and (8puch reformulation fop = 1 in Section IV-C. However, there
where y* is the Lagrange multiplier corresponding to thexists a rich theory of optimization for nonsmooth functions,
solution of (5) with the constrainfiw = b, for someb. and a result analogous to Theorem 2.3 can be derived for (4)
Proof: Over the compact set defined by the constrainsee Theorem 4.2).
17w =1 andw > 0, D is convex (and therefore continuous)
and [ is strictly convex and continuous. Therefore, a uniq
minimizer w* of (4) exists.
Suppose the unique minimizer* of (4) is known. Leth = We summarize in this section some of the optimality con-
Aw*. Solve (5) with the constraimtw = b for a minimizerw®  cepts from nonsmooth optimality that we need for our analysis.
(such a minimizer must exist because the constraint is feasiblgr treatment follows the approach of [26]. The vegjds a

. q; exp(—a] y*)
wj =

as required. |

u .
E. Nonsmooth optimality concepts

for w*). Sincew* solves (5), it satisfies the constraint? = subgradientof the convex functionf(z) : R" — R at z if

b, and thusD(Aw* — b) = 0 = D(Aw* — b). -
Further, it must be thaf (w*;q) = Z(w';q), because if fle+p) > )+ 9" p,

gtherwmeI*(w ’ql)d< It<w ’qtil thenwt C.()L;Jld fOt_SO;)VG (3) for all p € R™. The subgradient is normal to a supporting
ecausew™ would sa isty € constraintluw” = an hyperplane off atz. The set of all subgradients

have lower relative entropy. Similarly, assumifigw*;q) >

Z(w¥; q) rgquires thaﬁuf.not be the minimizer of (4). Of (@) g | flx+p) > f(@)+¢Tp foral peR"}
Then sincew* satsifies the constraindw* = b and

I(w*;q) = I(w* q), it must be a minimizer of (5). Since is thesubdifferentialof f at z. When f is differentiable atz,
w' is defined as the minimizer of (5), and there is a uniqubere is only a single supporting hyperplane at that point, and
minimizer, themo; must equaiw? for all j. the subgradient is unique and correspond&tf(x).
From Theorem 2.3y* has the form defined by (7) and (8), Definition 4.1 (Nonsmooth First-Order OptimalityA
and thusw* must also have the form defined by (7) and (8)riple (w*,(*,y*) is a first-order optimal point of (4) if it
m satisfies the following conditions:

1Tw=1 (13a)

IV. EXACT PENALTY FORMULATION -
VoZ(w;q)+¢1+A"y=0, (13b)

When the distortion function takes the form
T _ wherey* € 0(o||Aw* —b||,).
D(Aw =) = [|4w = bllp, (12) ™ Comparing (6) with (13), we see hay € 8(c||Aw* —b]|,)
with 1 < p < oo, the penalty function formulation (4) is may be interpreted as a kind of Lagrange multiplier for the
exact—for a finitely large penalty parameter, its solution constraintAw = b implied by the penalty function (12). Note
has zero distortion, so that the constraint (3) is satisfi¢dat for any giverr, Aw* — b may or may not equal zero.
exactly. With an exact penalty function we can construct a The dual normis particularly important for the analysis of

function whose unconstrained optima coincide with the optinexact penalty functions and will be useful in our analysis. For
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any norm|| - || in R™, the corresponding dual norm is defined’he solution of (15) is a 5-tupl€w™*,r*, s*,(*,y*) that

as satisfies the first-order KKT conditions
_ T
IMb—wﬁgyx- 17w =1 (16a)
Aw+r—s=5b (16b)
For anyp andq such thatl /p+1/q = 1, the/, and{, norms -

are dual to each other. VoI(wiq) +¢1+Ay=0 (16c)
min(r,cl —y) =0 (16d)
B. Solution of the exact penalty function min(s, o1 +y) = 0. (16e)

Theorem 4.2 shows that penalty function formulation (45he last two conditions (16d)—(16e) imply that their arguments
always has a solution with the form specified in (7) and (8% nonnegative, so thatl > y > —ol. This pair of
and exponenital parametgt which is bounded as a functioninequalities can be conveniently restated as
of o. _ ' ylls < o (17)

Theorem 4.2:There exists a vectow*, with components hat th q dual h oth
defined by (7) and (8), that solves (4). The paramegte \Ot€ that thel; and f, norms are dual to each other, so
(o]l Aw* — b|,). that (17) is equivalent tdly||, < o (see (14)).

Proof: The feasible set of (4) is nonempty, and the leve] -SMMa 4.4:Suppose tha(“j*’r*’ s ¢*,y") is a solution
setsS,, — {w | Z(w:q) < T(wo;q)} are closed and bounded.Of (16) with o _> 0. _Tr:eS r* and s* are componentwise
Hence, the strict convexity of implies that there exists acompleme.ntary, lhat 193 5 n 0, forsz B 1""’*d'
unique solutiony* to (4). Moreover, the constraints’ w = 1 Proof: Setz" = o1 —y* and2® = o1 +y". Then

are linear so that, by [26, Theorem 14.6.1], there exist a vector 2"+ 2°=201>0 (18)
y* € 9(a| Aw" —l|,,) and a scalac” such that(w™,¢*,4") pecauser > 0 by hypothesis. Note that (16d)—(16e) imply
satisfies the first-order optimality conditions (13). that

The form of the solutionw* can be derived in the same PRl — g% — (). (19)
manner as (11). [ Lo

Note that the condition* € (o Aw* — b],) imposes an Now suppose_that;‘ > 0. Multiplying the ith component
implicit bound on the magnitude aof*. With the definition Of (18) byff yields r}'z; > 0. Hencez} > 0, *and from (19),
of the dual norm, the subdifferential ofi| Aw — b||, can be We havesi = 0. By analogous argument; > 0 implies

equivalently stated (see [26, Chapter 14]) as ri =0. Thenris; =0, as required. L
Theorem 4.5 (Exponential form}et o be a positive con-

d(o||Aw=b,) = {y | y* (Aw—b) = o||Aw—bl|,, |lyll» < o}, stant. Suppose thatw*,r*, s*,¢*,y*) is a solution of (15).
(14) Let A, A,, A_ be index sets such that

and soo provides a bound on the dual normgf. This creates (Aw); = b, ic A

a bound on the exponential decay of the solutignby virtue ¢ ’

of (11). (Aw); > b, i€ Ay

The exact penalty function formulation is exact in the (Aw); <b, 1€ A_.
following sense: for all values of the penalty parameter over@en
certain threshold value, KKT points of (5) are also stationary wt =
points of its exact penalty function formulation. J Zz?zl u]»’

Theorem 4.3:Let w* be a solution of (5), with correspond-Where
ing Lagrange multiplierg™* and y* (see Theorem 2.3). Then
for everyo > |ly* ||, w* is also a minimizer of (4). _ .

Proof: This result follows immediately from Theorem ‘7 = 4¢P ;aiiyﬂ' to V; @ij =9 .;; a;j | - (20)
. 3 1 -+ 1 —

14.3.1 in [26]. u Proof: Because (15) and (4) are equivalent: must

have the form specified by (7)—(8).
C. The/;-penalty function Now we consider the values that eagh may have. Ifi €

; L Ay, then(Aw™*); > b, and (16b) together with (16d) implies
When the penalty function of (4 es the norm, it +
P y funct (4) uses tie S t0 <r; < sf. By Lemma 4.4, we must hawvg = 0. Then

objective is discontinuous over sets of hyperplanes. Howe\z}g‘,a
there is a common device in the optimization literature f Ffm (16€) we deduce th,@? - E;y analogous argument,
reformulating it as an equivalent and smooth problem (se€&, — G*for i € A Fori € A, _(Alf )i - b, and by (16D),
for example, [27, Theorem 4.8] and [28, Section 4.2.3]). V\{? = s;. Lemma 4.4 then implies} = s = 0, and so we

* —
introduce a seelastic variablesr, s > 0, and rewrite (5) as ave from (Z_L6d)T—(iLGe) that >y > —o. In summary, we
may now writea; y* as
minimize Z(w;q) + o1 (r + s)
w,r,s

T * *
, a;y :Zaijy»—koz:aij—oZaij, (21)
T J J
subject to 1"w=1 (15) i€A i€Ay icA_
Aw+r—s=b for eachj =1, ..., k. Substituting (21) into (8), we see that

r,s > 0. w; has the required form. [ ]
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